Effects of shallow slope on the evolution of numerically simulated nocturnal low-level jets

Evgeni Fedorovich, Jeremy Gibbs, and Alan Shapiro

University of Oklahoma and University of Utah

Terrain of the U.S. Great Plains

Nocturnal low-level jets over U.S. Great Plains

(examples from Klein et al. BLM 2016)

Flow variables in slope-following coordinates

u, *v*, *w* – velocity components along slope-following coordinates *x*, *y*, *z*; $b = g[\Theta - \Theta_e(z')] / \Theta_r - \text{buoyancy}; \quad \Theta_e(z') - \text{environmental potential temperature};$ $\pi = [p - p_e(z')] / \rho_r - \text{normalized } p; \qquad \gamma = d\Theta_e / dz' > 0 - \text{prescribed } \Theta_e \text{ gradient};$ $f > 0 - \text{Coriolis parameter}, \qquad V_g - \text{geostrophic wind (known and directed along y)};$ $N = (g\gamma / \Theta_r)^{1/2} - \text{Brunt-Väisälä frequency}; \qquad \alpha - \text{slope angle } (\sim \pi / 1000 = 0.18^\circ);$ $v - \text{kinematic viscosity}, v_h - \text{thermal diffusivity (we take } v_h = v, \text{ so } \Pr = v / v_h \text{ is 1)}.$

Governing equations for boundary-layer flow on a slope

Momentum balance in Boussinesq approximation:

$$\frac{\partial u}{\partial t} + u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} + w\frac{\partial u}{\partial z} = -\frac{\partial \pi}{\partial x} + f(v - V_g) - b\sin\alpha + v\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2}\right),$$
(1)

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = -\frac{\partial \pi}{\partial y} - fu + v \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2}\right),$$
(2)

$$\frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = -\frac{\partial \pi}{\partial z} + b \cos \alpha + v \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right), \quad (3)$$

Thermal energy (buoyancy balance):

$$\frac{\partial b}{\partial t} + u \frac{\partial b}{\partial x} + v \frac{\partial b}{\partial y} + w \frac{\partial b}{\partial z} = N^2 (u \sin \alpha - w \cos \alpha) + v_h \left(\frac{\partial^2 b}{\partial x^2} + \frac{\partial^2 b}{\partial y^2} + \frac{\partial^2 b}{\partial z^2} \right), \quad (4)$$

Mass conservation (continuity):

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0.$$
 (5)

Simulation setup

Boundary conditions

Lateral (*x*-*y*) conditions for *u*, *v*, *w*, *b*, and π are periodic.

Upper conditions (large z): $\partial \varphi / \partial z = 0$, where $\varphi = (u, v, b)$; w = 0,

and $\partial \pi / \partial z$ from the third equation of motion (3).

Lower conditions (z=0): no-slip/impermeability (u=v=w=0),

 $\partial \pi / \partial z$ from (3), and $b = b_s(t)$ or $B = -v(\partial b / \partial z)\Big|_{z=0} = B_s(t)$.

Initial state

Stably stratified atmosphere in the geostrophic equilibrium with linear $\Theta_{e}(z')$ and zero *b*.

Surface buoyancy forcing

At $0 < t \le \Delta t_d$: $b_{sd} = const > 0$ or $B_{sd} = const > 0$.

At
$$t > \Delta t_d$$
: $b_{sn} = const < b_{sd}$ or $B_{sn} = const < 0$.

Simulation domain and grid

Dimensions (L_i , rescaled to VAT) and grid node numbers N_i :

 L_x , $L_y = 1024 - 4096$ m; N_x , $N_y = 256 - 1024$; $L_z = 1536$ m, $N_z = 384$ Numerics: Micro HH (4³), developed by Chiel van Heerwaarden, with 4th order Runge-Kutta time integration, 4th order advection, and 4th order diffusion.

Slope-angle sensitivity of TKE and V: $\alpha = 0^{\circ}, 0.09^{\circ}, 0.18^{\circ}, 0.27^{\circ}$ Surface buoyancy forcing case

256x256x384 (slope) vs. 256x256x384 (flat) - time: 000 m

256x256x384 (slope) vs. 256x256x384 (flat) - time: 060 m

256x256x384 (slope) vs. 256x256x384 (flat) - time: 119 m

256x256x384 (slope) vs. 256x256x384 (flat) - time: 180 m

256x256x384 (slope) vs. 256x256x384 (flat) - time: 241 m

256x256x384 (slope) vs. 256x256x384 (flat) - time: 299 m

256x256x384 (slope) vs. 256x256x384 (flat) - time: 360 m

256x256x384 (slope) vs. 256x256x384 (flat) - time: 419 m

256x256x384 (slope) vs. 256x256x384 (flat) - time: 480 m

256x256x384 (slope) vs. 256x256x384 (flat) - time: 541 m

256x256x384 (slope) vs. 256x256x384 (flat) - time: 599 m

256x256x384 (slope) vs. 256x256x384 (flat) - time: 660 m

256x256x384 (slope) vs. 256x256x384 (flat) - time: 719 m

256x256x384 (slope) vs. 256x256x384 (flat) - time: 780 m

256x256x384 (slope) vs. 256x256x384 (flat) - time: 841 m

256x256x384 (slope) vs. 256x256x384 (flat) - time: 899 m

Slope-angle sensitivity of TKE and *V*: $\alpha = 0^{\circ}$, 0.09°, 0.18°, 0.27° Surface buoyancy flux forcing case

No external geostrophic forcing is needed for LLJ on a slope! Setup: $\alpha = 0.18^{\circ}$, $V_g = 0$, $b_{sd} = 0.1 \text{ m s}^{-2}$, $b_{sn} = 0$, $N = 2 \times 10^{-2} \text{ s}^{-1}$

Conclusions

- Shallow slope affects the LLJ structure and evolution in multiple ways
- Along-slope advection of environmental potential temperature can turn a quiet night into a turbulent one, leading to drastic changes in the LLJ properties
- Over a slope, a pronounced nighttime LLJ can develop in the absence of external geostrophic forcing
- LLJ evolution over a slope depends on the type of surface forcing (buoyancy versus buoyancy flux) much stronger than evolution of the flat-terrain LLJ
- Daytime flow preconditioning plays especially important role in LLJ over a slope

Support from NSF (AGS-1359698) is gratefully acknowledged!

Observed nocturnal LLJ over Great Plains October 24, 2012, northern Oklahoma Wind speed from Doppler lidar scans

Scaled governing equations

Scales: $V = \left| V_g \right|$ velocity;H (boundary-layer depth ~ domain height) length; HV^{-1} time; V^2H^{-1} buoyancy; V^2 pressure.

Normalized governing equations:

$$\frac{\partial u_{n}}{\partial t_{n}} + u_{n}\frac{\partial u_{n}}{\partial x_{n}} + v_{n}\frac{\partial u_{n}}{\partial y_{n}} + w_{n}\frac{\partial u_{n}}{\partial z_{n}} = -\frac{\partial \pi_{n}}{\partial x_{n}} + \operatorname{Ro}^{-1}(v_{n}-1) - b_{n}\sin\alpha + \operatorname{Re}^{-1}\left(\frac{\partial^{2} u_{n}}{\partial x_{n}^{2}} + \frac{\partial^{2} u_{n}}{\partial y_{n}^{2}} + \frac{\partial^{2} u_{n}}{\partial z_{n}^{2}}\right), (6)$$

$$\frac{\partial v_{n}}{\partial t_{n}} + u_{n} \frac{\partial v_{n}}{\partial x_{n}} + v_{n} \frac{\partial v_{n}}{\partial y} + w_{n} \frac{\partial v_{n}}{\partial z_{n}} = -\frac{\partial \pi_{n}}{\partial y_{n}} - \operatorname{Ro}^{-1} u_{n} + \operatorname{Re}^{-1} \left(\frac{\partial^{2} v_{n}}{\partial x_{n}^{2}} + \frac{\partial^{2} v_{n}}{\partial y_{n}^{2}} + \frac{\partial^{2} v_{n}}{\partial z_{n}^{2}} \right), \quad (7)$$

$$\frac{\partial w_n}{\partial t_n} + u_n \frac{\partial w_n}{\partial x_n} + v_n \frac{\partial w_n}{\partial y_n} + w_n \frac{\partial w_n}{\partial z_n} = -\frac{\partial \pi_n}{\partial z_n} + b_n \cos \alpha + \operatorname{Re}^{-1} \left(\frac{\partial^2 w_n}{\partial x_n^2} + \frac{\partial^2 w_n}{\partial y_n^2} + \frac{\partial^2 w_n}{\partial z_n^2} \right), \quad (8)$$

$$\frac{\partial b_{n}}{\partial t_{n}} + u_{n} \frac{\partial b_{n}}{\partial x_{n}} + v_{n} \frac{\partial b_{n}}{\partial y_{n}} + w_{n} \frac{\partial b_{n}}{\partial z_{n}} = \operatorname{BuRo}^{-2}(u_{n} \sin \alpha - w_{n} \cos \alpha) + \operatorname{Re}^{-1}\left(\frac{\partial^{2} b_{n}}{\partial x_{n}^{2}} + \frac{\partial^{2} b_{n}}{\partial y_{n}^{2}} + \frac{\partial^{2} b_{n}}{\partial z_{n}^{2}}\right), \quad (9)$$

$$\frac{\partial u_{n}}{\partial x_{n}} + \frac{\partial v_{n}}{\partial y_{n}} + \frac{\partial w_{n}}{\partial z_{n}} = 0.$$
(10)

Dimensionless parameters of the scaled problem

Rossby number $\text{Ro} = VH^{-1}f^{-1}$ **Reynolds number** $\text{Re} = VHv^{-1}$ **Burger number** $\text{Bu} = N^2f^{-2}$ *b*_s-based **Ri number** $\text{Ri} = -b_sHV^{-2}$

N-based Richardson number $BuRo^{-2} = N^2 H^2 V^{-2}$

Atmosphere (ATM):

 $V = 10 \text{ m s}^{-1}$, $H = 10^3 \text{ m}$, $f = 10^{-4} \text{ s}^{-1}$, $N = 10^{-2} \text{ s}^{-1}$, $\nu = 10^{-5} \text{ m}^2 \text{ s}^{-1}$, $|b_s| = 0.1 \text{ m s}^{-2}$; Ro = 10², Re = 10⁹, Bu = 10⁴, |Ri| = 1

Length scale range: $\eta \sim (v^3 V^{-3} H)^{1/4} \sim 10^{-4} \text{ m} \qquad \leftrightarrow \qquad \sim H = 10^3 \text{ m}$

Downscaled laboratory analog of atmospheric flow (LEX):

 $V = 0.1 \text{ m s}^{-1}$, H = 0.1 m, $f = 10^{-2} \text{ s}^{-1}$, $N = 1 \text{ s}^{-1}$, $v = 10^{-6} \text{ m}^2 \text{ s}^{-1}$, $|b_s| = 0.1 \text{ m s}^{-2}$; Ro = 10², Re = 10⁴, Bu = 10⁴, |Ri| = 1

Length scale range: $\eta \sim (v^3 V^{-3} H)^{1/4} \sim 10^{-4} m \quad \leftrightarrow \quad \sim H = 0.1 m$

Viscous atmosphere (VAT):

 $V = 10 \text{ m s}^{-1}$, $H = 10^3 \text{ m}$, $f = 10^{-4} \text{ s}^{-1}$, $N = 10^{-2} \text{ s}^{-1}$, $\nu = 1 \text{ m}^2 \text{ s}^{-1}$, $|b_s| = 0.1 \text{ m s}^{-2}$; Ro = 10², Re = 10⁴, Bu = 10⁴, |Ri| = 1

Length scale range: $\eta \sim (v^3 V^{-3} H)^{1/4} \sim 2 \text{ m} \qquad \leftrightarrow \qquad \sim H = 10^3 \text{ m}$

Interpretations:

Integral flow scales in **VAT** are the same as in **ATM**, but the working fluid is way more viscous than the air.

- For given α , the equality of flow numbers (Ro, Re, Bu, and Ri) for the smallscale **LEX** flow and for the large-scale **VAT** flow signifies the similarity of these flows in terms of equality of their dimensionless solutions.
- **VAT** simulation may be conceptually interpreted as large-eddy simulation (LES) with constant subgrid eddy diffusivities for momentum and heat/buoyancy.